15#ifndef RAPIDJSON_ITOA_
16#define RAPIDJSON_ITOA_
23inline const char* GetDigitsLut() {
24 static const char cDigitsLut[200] = {
25 '0',
'0',
'0',
'1',
'0',
'2',
'0',
'3',
'0',
'4',
'0',
'5',
'0',
'6',
'0',
'7',
'0',
'8',
'0',
'9',
26 '1',
'0',
'1',
'1',
'1',
'2',
'1',
'3',
'1',
'4',
'1',
'5',
'1',
'6',
'1',
'7',
'1',
'8',
'1',
'9',
27 '2',
'0',
'2',
'1',
'2',
'2',
'2',
'3',
'2',
'4',
'2',
'5',
'2',
'6',
'2',
'7',
'2',
'8',
'2',
'9',
28 '3',
'0',
'3',
'1',
'3',
'2',
'3',
'3',
'3',
'4',
'3',
'5',
'3',
'6',
'3',
'7',
'3',
'8',
'3',
'9',
29 '4',
'0',
'4',
'1',
'4',
'2',
'4',
'3',
'4',
'4',
'4',
'5',
'4',
'6',
'4',
'7',
'4',
'8',
'4',
'9',
30 '5',
'0',
'5',
'1',
'5',
'2',
'5',
'3',
'5',
'4',
'5',
'5',
'5',
'6',
'5',
'7',
'5',
'8',
'5',
'9',
31 '6',
'0',
'6',
'1',
'6',
'2',
'6',
'3',
'6',
'4',
'6',
'5',
'6',
'6',
'6',
'7',
'6',
'8',
'6',
'9',
32 '7',
'0',
'7',
'1',
'7',
'2',
'7',
'3',
'7',
'4',
'7',
'5',
'7',
'6',
'7',
'7',
'7',
'8',
'7',
'9',
33 '8',
'0',
'8',
'1',
'8',
'2',
'8',
'3',
'8',
'4',
'8',
'5',
'8',
'6',
'8',
'7',
'8',
'8',
'8',
'9',
34 '9',
'0',
'9',
'1',
'9',
'2',
'9',
'3',
'9',
'4',
'9',
'5',
'9',
'6',
'9',
'7',
'9',
'8',
'9',
'9'
39inline char* u32toa(uint32_t value,
char* buffer) {
42 const char* cDigitsLut = GetDigitsLut();
45 const uint32_t d1 = (value / 100) << 1;
46 const uint32_t d2 = (value % 100) << 1;
49 *buffer++ = cDigitsLut[d1];
51 *buffer++ = cDigitsLut[d1 + 1];
53 *buffer++ = cDigitsLut[d2];
54 *buffer++ = cDigitsLut[d2 + 1];
56 else if (value < 100000000) {
58 const uint32_t b = value / 10000;
59 const uint32_t c = value % 10000;
61 const uint32_t d1 = (b / 100) << 1;
62 const uint32_t d2 = (b % 100) << 1;
64 const uint32_t d3 = (c / 100) << 1;
65 const uint32_t d4 = (c % 100) << 1;
67 if (value >= 10000000)
68 *buffer++ = cDigitsLut[d1];
70 *buffer++ = cDigitsLut[d1 + 1];
72 *buffer++ = cDigitsLut[d2];
73 *buffer++ = cDigitsLut[d2 + 1];
75 *buffer++ = cDigitsLut[d3];
76 *buffer++ = cDigitsLut[d3 + 1];
77 *buffer++ = cDigitsLut[d4];
78 *buffer++ = cDigitsLut[d4 + 1];
83 const uint32_t a = value / 100000000;
87 const unsigned i = a << 1;
88 *buffer++ = cDigitsLut[i];
89 *buffer++ = cDigitsLut[i + 1];
92 *buffer++ =
static_cast<char>(
'0' +
static_cast<char>(a));
94 const uint32_t b = value / 10000;
95 const uint32_t c = value % 10000;
97 const uint32_t d1 = (b / 100) << 1;
98 const uint32_t d2 = (b % 100) << 1;
100 const uint32_t d3 = (c / 100) << 1;
101 const uint32_t d4 = (c % 100) << 1;
103 *buffer++ = cDigitsLut[d1];
104 *buffer++ = cDigitsLut[d1 + 1];
105 *buffer++ = cDigitsLut[d2];
106 *buffer++ = cDigitsLut[d2 + 1];
107 *buffer++ = cDigitsLut[d3];
108 *buffer++ = cDigitsLut[d3 + 1];
109 *buffer++ = cDigitsLut[d4];
110 *buffer++ = cDigitsLut[d4 + 1];
115inline char* i32toa(int32_t value,
char* buffer) {
117 uint32_t u =
static_cast<uint32_t
>(value);
123 return u32toa(u, buffer);
126inline char* u64toa(uint64_t value,
char* buffer) {
128 const char* cDigitsLut = GetDigitsLut();
129 const uint64_t kTen8 = 100000000;
130 const uint64_t kTen9 = kTen8 * 10;
131 const uint64_t kTen10 = kTen8 * 100;
132 const uint64_t kTen11 = kTen8 * 1000;
133 const uint64_t kTen12 = kTen8 * 10000;
134 const uint64_t kTen13 = kTen8 * 100000;
135 const uint64_t kTen14 = kTen8 * 1000000;
136 const uint64_t kTen15 = kTen8 * 10000000;
137 const uint64_t kTen16 = kTen8 * kTen8;
140 uint32_t v =
static_cast<uint32_t
>(value);
142 const uint32_t d1 = (v / 100) << 1;
143 const uint32_t d2 = (v % 100) << 1;
146 *buffer++ = cDigitsLut[d1];
148 *buffer++ = cDigitsLut[d1 + 1];
150 *buffer++ = cDigitsLut[d2];
151 *buffer++ = cDigitsLut[d2 + 1];
155 const uint32_t b = v / 10000;
156 const uint32_t c = v % 10000;
158 const uint32_t d1 = (b / 100) << 1;
159 const uint32_t d2 = (b % 100) << 1;
161 const uint32_t d3 = (c / 100) << 1;
162 const uint32_t d4 = (c % 100) << 1;
164 if (value >= 10000000)
165 *buffer++ = cDigitsLut[d1];
166 if (value >= 1000000)
167 *buffer++ = cDigitsLut[d1 + 1];
169 *buffer++ = cDigitsLut[d2];
170 *buffer++ = cDigitsLut[d2 + 1];
172 *buffer++ = cDigitsLut[d3];
173 *buffer++ = cDigitsLut[d3 + 1];
174 *buffer++ = cDigitsLut[d4];
175 *buffer++ = cDigitsLut[d4 + 1];
178 else if (value < kTen16) {
179 const uint32_t v0 =
static_cast<uint32_t
>(value / kTen8);
180 const uint32_t v1 =
static_cast<uint32_t
>(value % kTen8);
182 const uint32_t b0 = v0 / 10000;
183 const uint32_t c0 = v0 % 10000;
185 const uint32_t d1 = (b0 / 100) << 1;
186 const uint32_t d2 = (b0 % 100) << 1;
188 const uint32_t d3 = (c0 / 100) << 1;
189 const uint32_t d4 = (c0 % 100) << 1;
191 const uint32_t b1 = v1 / 10000;
192 const uint32_t c1 = v1 % 10000;
194 const uint32_t d5 = (b1 / 100) << 1;
195 const uint32_t d6 = (b1 % 100) << 1;
197 const uint32_t d7 = (c1 / 100) << 1;
198 const uint32_t d8 = (c1 % 100) << 1;
201 *buffer++ = cDigitsLut[d1];
203 *buffer++ = cDigitsLut[d1 + 1];
205 *buffer++ = cDigitsLut[d2];
207 *buffer++ = cDigitsLut[d2 + 1];
209 *buffer++ = cDigitsLut[d3];
211 *buffer++ = cDigitsLut[d3 + 1];
213 *buffer++ = cDigitsLut[d4];
215 *buffer++ = cDigitsLut[d4 + 1];
216 *buffer++ = cDigitsLut[d5];
217 *buffer++ = cDigitsLut[d5 + 1];
218 *buffer++ = cDigitsLut[d6];
219 *buffer++ = cDigitsLut[d6 + 1];
220 *buffer++ = cDigitsLut[d7];
221 *buffer++ = cDigitsLut[d7 + 1];
222 *buffer++ = cDigitsLut[d8];
223 *buffer++ = cDigitsLut[d8 + 1];
226 const uint32_t a =
static_cast<uint32_t
>(value / kTen16);
230 *buffer++ =
static_cast<char>(
'0' +
static_cast<char>(a));
232 const uint32_t i = a << 1;
233 *buffer++ = cDigitsLut[i];
234 *buffer++ = cDigitsLut[i + 1];
237 *buffer++ =
static_cast<char>(
'0' +
static_cast<char>(a / 100));
239 const uint32_t i = (a % 100) << 1;
240 *buffer++ = cDigitsLut[i];
241 *buffer++ = cDigitsLut[i + 1];
244 const uint32_t i = (a / 100) << 1;
245 const uint32_t j = (a % 100) << 1;
246 *buffer++ = cDigitsLut[i];
247 *buffer++ = cDigitsLut[i + 1];
248 *buffer++ = cDigitsLut[j];
249 *buffer++ = cDigitsLut[j + 1];
252 const uint32_t v0 =
static_cast<uint32_t
>(value / kTen8);
253 const uint32_t v1 =
static_cast<uint32_t
>(value % kTen8);
255 const uint32_t b0 = v0 / 10000;
256 const uint32_t c0 = v0 % 10000;
258 const uint32_t d1 = (b0 / 100) << 1;
259 const uint32_t d2 = (b0 % 100) << 1;
261 const uint32_t d3 = (c0 / 100) << 1;
262 const uint32_t d4 = (c0 % 100) << 1;
264 const uint32_t b1 = v1 / 10000;
265 const uint32_t c1 = v1 % 10000;
267 const uint32_t d5 = (b1 / 100) << 1;
268 const uint32_t d6 = (b1 % 100) << 1;
270 const uint32_t d7 = (c1 / 100) << 1;
271 const uint32_t d8 = (c1 % 100) << 1;
273 *buffer++ = cDigitsLut[d1];
274 *buffer++ = cDigitsLut[d1 + 1];
275 *buffer++ = cDigitsLut[d2];
276 *buffer++ = cDigitsLut[d2 + 1];
277 *buffer++ = cDigitsLut[d3];
278 *buffer++ = cDigitsLut[d3 + 1];
279 *buffer++ = cDigitsLut[d4];
280 *buffer++ = cDigitsLut[d4 + 1];
281 *buffer++ = cDigitsLut[d5];
282 *buffer++ = cDigitsLut[d5 + 1];
283 *buffer++ = cDigitsLut[d6];
284 *buffer++ = cDigitsLut[d6 + 1];
285 *buffer++ = cDigitsLut[d7];
286 *buffer++ = cDigitsLut[d7 + 1];
287 *buffer++ = cDigitsLut[d8];
288 *buffer++ = cDigitsLut[d8 + 1];
294inline char* i64toa(int64_t value,
char* buffer) {
296 uint64_t u =
static_cast<uint64_t
>(value);
302 return u64toa(u, buffer);
#define RAPIDJSON_ASSERT(x)
Assertion.
#define RAPIDJSON_NAMESPACE_BEGIN
provide custom rapidjson namespace (opening expression)
#define RAPIDJSON_NAMESPACE_END
provide custom rapidjson namespace (closing expression)
common definitions and configuration